
 Submitted on: 6/19/2014

1

Versioning Vocabularies in a Linked Data World

Diane I. Hillmann
Metadata Management Associates LLC), Jacksonville, NY, USA.
E-mail address: metadata.maven@gmail.com

Gordon Dunsire
Independent Consultant, Edinburgh, Scotland.
E-mail address: gordon@gordondunsire.com

Jon Phipps
Metadata Management Associates LLC, Jacksonville, NY, USA.
E-mail address: jonphipps@gmail.com

Copyright © 2014 by Diane Hillmann, Gordon Dunsire & Jon Phipps. This work is made available
under the terms of the Creative Commons Attribution 3.0 Unported License:
http://creativecommons.org/licenses/by/3.0/

Abstract:

Policies regarding change management in open or public vocabularies used in the context of Linked
Open Data have lagged behind those driving other web-based communities of practice. A fresh
emphasis on vocabulary management and maintenance has begun to emerge, as the reliance on
potentially volatile vocabularies, and the implications of their ongoing growth and change, has begun
to permeate the conversation.

Particularly in libraries, where management of commonly used vocabularies has long been a
community-wide activity, management of vocabularies has been seen as the realm of larger
institutions and organizations. This centralized control has been workable (if slow to evolve to
incorporate new needs) so long as data distribution has also been centralized, but this pattern of
distribution has become more questionable as a transition to the more open world of linked data
begins to demonstrate the inflexibility of traditional practices. As more attention shifts to new
vocabulary standards and usages outside libraries, researchers and innovative organizations have
sought to take advantage of this boom in interest, but unlike librarians, they have little experience in
implementation over time.

Merging the technology of the Semantic Web with the information management experience of
libraries seems a reasonable strategy, but better understanding by all of where practices must change
is critical.

Keywords: Vocabulary management, semantic versioning, RDA, change management, ontologies.

2

Preamble

This paper uses the term “vocabularies” for structured sets of information typically used in
cultural heritage resource discovery services. They are categorized in the semantic Web
environment as element sets, value vocabularies, and datasets, and represented as data in
Resource Description Framework (RDF) for use in linked data applications. The paper uses a
weak definition of “ontology” as representing intrinsic and extrinsic meaning – information
minus the data – applicable to contextualized datasets and knowledge organization system
vocabularies as well as element sets.

Background and introduction

The application of digital technology to library services since the 1960s has driven the
evolution of centralized models for library metadata creation and distribution. These have
been effective in allowing additions and changes to bibliographic schema and terminologies
to be integrated into the entire body of legacy data in a predictable way, enabling libraries
and their system vendors to effectively maintain the critical stability of their systems and
data. The openness of processes has varied, for example from community participation in the
management of change over time in the semantics of the predominate standard, MARC 21, to
the relatively opaque curtain behind which, until recently, LCSH was managed by the Library
of Congress (LC). Nonetheless, the change process was well-documented, relatively glacial,
and effectively communicated to soften the impact.

The majority of changes managed via this approach have been easily implemented by the
major data distribution entities and most of the system vendors that libraries rely upon. This
centralized architecture has its functional gaps--some changes in LCSH practice, for instance,
required extensive human intervention. One example of this gap was the separation of the
LCSH heading “Nurses and Nursing” to “Nurses” and “Nursing.” A semantic refinement
such as this cannot be handled by machine; it was necessary to examine the record or the item
to determine which term was appropriate, but the tradition of collaboration and collective
activity in libraries pulled in many hands to lighten the workload.

There are other issues with the traditional model, perhaps most obviously the economic
impact on smaller institutions with fewer staff to interact with pull processes for
synchronizing the local catalog with changes made to the common, “union” database.
Libraries who purchase data from vendors sometimes incur additional charges--and always
additional work--to replace changed records. There are also problems with timeliness: the
process of approving changes in semantics or encoding practice is often measured in years,
and implementation can take considerable time to permeate the environment of closely tied
central databases and local library catalogs dependent on those databases.

The most recent digital technology to emerge for library applications is the Semantic Web
and linked data. There is significant investment in the publication of library datasets such as
the catalogues of national libraries, element sets such as ISBD and BIBFRAME, and value
vocabularies such as UNIMARC code lists and RDA terms. However, efforts by some large
vocabulary owners to begin implementing more linked data friendly processes within legacy
vocabularies, though welcomed, have too often fallen short because of reliance on older
practices as well as a lack of understanding of semantic Web requirements. This is
understandable: best practices are not yet available in either the library community or the
semantic Web to ensure that vocabulary changes are managed efficiently and effectively.

3

As the importance of vocabularies for linked data distribution is becoming more recognized,
the growing decentralization this implies for libraries can be intimidating to many
practitioners. The notion that in this new environment, each user must figure out how to
manage updating, in too many cases without services providing notification of changes, much
less automated updating, induces panic. The situation as it stands discourages the use of any
linked data vocabularies, much less the variety of vocabularies that a project or institution
might require. Without a model for change management that can be used broadly by both
data providers and users, adoption of appropriate vocabularies will necessarily be slow,
expensive, and frustrating.

Evolving change management models

Most of us old enough to have witnessed the personal computer revolution and subsequent
growth of mobile devices have lived through several stages of evolution as developers of
applications (not to mention “apps”) coped with the necessity of updating their products as
operating systems changed, competition for users grew, and functionality sought by
customers became more sophisticated. Operating systems, software applications, and open
standards such as HTML and JavaScript are increasingly interdependent and a seemingly
minor change can have a devastating ripple effect. Current practices for updating software
optimize fast distribution of changes and are increasingly automatic, despite past emphasis on
user control in an effort to avoid malware.

Software updates in general use version numbering to identify for users, and updating
software, the version of individual software packages on a computer. Over time the software
industry has refined their practices to be able to indicate via the version number the extent of
change represented in an update. The software development community has recently begun to
move toward a formal specification of version management known as “Semantic
Versioning”.

“This is not a new or revolutionary idea. In fact, you probably do something close to
this already. The problem is that "close" isn't good enough. Without compliance to
some sort of formal specification, version numbers are essentially useless for
dependency management. By giving a name and clear definition to the above ideas, it
becomes easy to communicate your intentions to the users of your software. Once
these intentions are clear, flexible (but not too flexible) dependency specifications can
finally be made.” [1]

The semantic versioning proposal for best practices noted above focuses on the problem of
“dependencies”, recognizing that in the software realm, coping with change is complicated by
the practice of using applications in combination to accomplish specific goals, where each
part of the “package” might be dependent on different operating systems or versions of other
parts of the package.

“A simple example will demonstrate how Semantic Versioning can make dependency
hell a thing of the past. Consider a library called "Firetruck." It requires a
Semantically Versioned package named "Ladder." At the time that Firetruck is
created, Ladder is at version 3.1.0. Since Firetruck uses some functionality that was
first introduced in 3.1.0, you can safely specify the Ladder dependency as greater than
or equal to 3.1.0 but less than 4.0.0. Now, when Ladder version 3.1.1 and 3.2.0

4

become available, you can release them to your package management system and
know that they will be compatible with existing dependent software.”

There have been some attempts to apply semantic versioning principles to ontologies, making
the point that there are more similarities with the requirements for software than differences,
as well as some general similarities to the management of application programming
interfaces:

“OWL ontologies should be semantically versioned, which means two things:
* make the ontology’s version identifier structured & meaningful, i.e., encode some
meaning in the string of characters that makes up the version identifier; and
* change the version identifier according to well-understood, public, and reasonable
rules.
Which suggests, of course, that a version identifier, plus a strategy for changing
version identifiers, is a simple signaling mechanism intended to make multi-party
coordination games cheaper and less disruptive for the participants. Consumers and
producers of an ontology, no less and no more than of an API, are engaging in a
multi-party coordination game in which costs should be kept as low as possible.
Semantic versioning is one such cost control mechanism.” [2]

It seems clear that in order to use a semantic versioning model to manage a similar level of
complexity across the web itself requires that vocabulary managers and management systems
pay better attention to the way they capture and describe change, focusing their effort at a
very granular level, not necessarily at the traditional “record” level so ingrained in current
library authority control systems.

The Open Metadata Registry (OMR) has been using the detailed history information it
collects since 2006 to enable time-defined snapshots and named versions. The process is
described in detail in a Registry Blog post. [3]

The image below, showing a page from the History tab for ISBD Content Form vocabulary,
shows that all changes to that vocabulary can be viewed, including which authorized
administrator or maintainer made the change and whether the change was an addition or an
update. The last column, which supports the view of a time-delimited “slice” of the
vocabulary itself, is the basis for the creation of named versions, accessible behind the
Versions tab.

5

The expectation was that as value vocabulary usage began moving beyond the human-
readable “heading” function used in library systems towards a more sophisticated, automated
environment, such services would be welcomed. In fact, the capability has been little used,
and was never implemented in the element set portion of the OMR (though detailed history is
maintained there as well). The OMR is currently building new change management capability
using GitHub, which is a better known and understood set of services and more likely to be
the basis for developing change control in the OMR in future.

The basis for GitHub is Git, a distributed version control system distinguished from its
predecessors by its view of data, rather than its user interface [4]. GitHub builds upon this
software, bringing in a web-based hosting service, a more standardized, stable and secure
workflow plus additional services supporting community development and social networking.
Because the GitHub user interface is relatively simple and optimized for groups and projects,
it has become ubiquitous in software development, and increasingly in vocabulary
management. Despite its origins in the software community, software experience isn’t
required to usefully participate.

6

Because projects are built up from a hosted platform, Github supports services largely
missing from vocabulary development projects, in particular the documentation for the
vocabulary and the provision of multiple flavors of output. The image below shows part of a
Github webpage under development for the RDA element sets, giving access to many
different formats of the RDA properties for manifestations.

The image below is the left half of the home page, showing the range of information
available.

7

The image below shows another Github page under development for RDA with the new
change management features for the OMR data.

Envisioning a well maintained future

What kind of a world can we envision using well-supported change management? Returning
to the model of personal computing software, it’s clear that there are good financial reasons
for developers to invest in building their software to interact smoothly with the variety of
customers. Their goal is to entice their users to continue to use their software, to purchase or
download (if the software is free) new versions and bug fixes, and, importantly, to review the
software in ways designed to attract even more users. The shift of some software sales from
bespoke websites to platforms like iTunes and Google Play have provided marketing
opportunities, easy discovery, reviewing and rating, and, for better or worse, standards with
which software must comply to participate.

The aspects that make the environment work are few but critical, starting with a shared model
and vocabulary for describing change, primarily for communicating with machines. The
builders of operating systems and hardware have a parallel need to support these software
applications, since they are also evaluated on the ease with which their products can interact
with applications of all kinds.

In the vocabulary development community adoption of modern technology-focused
maintenance models has been held back for several reasons, perhaps chief among them the
lack of understanding of how vocabularies should work in a semantic Web environment. In
some specific communities, like libraries, despite the strong tradition of use and development
of shared descriptive vocabularies, the transition from a well-understood but closed
environment to an open one with different technical requirements has been slow and badly

8

supported by existing institutions and organizations. The focus in the library community is
still largely on vocabularies as human-readable and interpretable text, and the models for
maintenance, while nicely collaborative, remain human centered and expensive.

In a recent blog post on some changes in vocabularies managed by the Library of Congress,
one of the authors of this paper noted:

“Large public vocabularies have tended to make an incomplete transition from print to
online, getting stuck, like LC, attempting to use the file management processes of the
print era to manage change behind a ‘service’ front end that isn’t really designed to do
the job it’s being asked to do. What needs to be examined, soon and in public, is what
the relationship is between these files and the legacy data which hangs over our heads
like a boulder of Damocles. Clearly, we’re not just in need of access to files (whether
one at a time or in batches) but require more of the kinds of services that support
libraries in managing and improving their data. These needs are especially critical to
those organizations engaged in the important work of integrating legacy and project
data, and trying to figure out a workflow that allows them to make full use of the
legacy public vocabularies.” [5]

Even recent cross-community discussions of vocabulary issues, such as those under the aegis
of the Dublin Core Metadata Initiative (DCMI), have focused on problems around discovery
of vocabularies, models of acceptable re-use, governance, and documentation. [6]

Vocabulary maintenance is seen as a general good, but how it could best be accomplished is
seldom discussed.

Looking ahead

What could a maintenance model based on Semantic Versioning provide? Perhaps most
importantly, it must provide a proven method for defining several levels of semantic
interoperability and stability that could be the basis of automated notifications and updating
for users of open vocabularies. Numeric version numbers, as used by software, could fairly
easily be adapted for vocabulary versions, although there are a few areas where terms of
practice used for software changes, like “patch” have no simple equivalent in the vocabulary
world.

Clark recognizes that there are differences between software and ontologies that must be
addressed:

“The last three are the hardest: what conditions constitute changes to major, minor,
and patch fields? These are harder because OWL ontologies are in some sense quite
different from programming language APIs. We’ve so far been riding the high of their
similarity, but now we have to deal substantively with their dissimilarity.
We want to end up with a versioning scheme that sends this set of signals:
* if there’s a patch change, consumers can safely ignore that version
* if there’s a major change, consumers should not ignore that version
* if there’s a minor change, consumers need to investigate further
Admittedly, the minor change ambiguity is not ideal, but for now we can’t seem to do
any better.

9

This is a kind of Goldilocks or binning problem: what counts as a big, medium, and
minor change to an OWL ontology? Someone’s always unhappy, no matter what
solution one offers to this kind of problem.”

Development of best practices and policy development in this environment is still emerging
from the software world, but a few efforts should be mentioned. The community around
GitHub is still working this ground, and the GitFlow policy statements are succinct and
simple. [7] The Ruby community is a bit more tentative in explaining their rules, but the
categorizations are still very similar. [8]

The OMR team, in developing the RDA Vocabularies has attempted some policy statements,
based on the core principles of http://semver.org, but generalized to the needs of vocabulary
managers:

• All public vocabularies MUST declare a version number, including those still in
development and not yet “published” or “released” (typically this would be a ‘pre-
release’ version of “0.X.X”.

• The version number MUST be declared as a meaningful (semantic) 3 segment number
(1.2.3), with segment meanings defined as follows:

1. MAJOR - changes in semantics that break backward compatibility.
2. MINOR - refinements to existing semantics and additional elements

(including things like additional scope notes).
3. PATCH - typos, changes to existing elements that don't alter or refine existing

semantics (e.g. minor rewording of an existing definition).
• Ongoing development work of published vocabularies MUST proceed on unpublished

copies of the vocabulary. In the case of a git-based workflow this will occur in any
branch not labeled “master”.

• Whenever a change to an existing vocabulary is published, however minor, the
version number MUST be incremented using the above rules. In the case of a git-
based workflow “publish” or “release” will mean merging the changes in the
development branch into the branch labeled “master”.

• A published vocabulary SHOULD maintain a changelog for each version number,
however minor, indicating what specifically was changed in that release.

Conclusion

A system for supporting the management of change of semantic data, based on successful
techniques used for software packages, is an essential requirement for encouraging wider
participation by the library and cultural heritage communities in the semantic Web. Many of
the element sets and value vocabularies of use in bibliographic metadata are in (perpetual)
developmental phases, at the same time as the pressure to publish datasets for linked data
applications is increasing. The decentralized nature of the semantic Web, where
incompleteness and contradiction are assumed, is unfamiliar to the traditional paradigm of
“perfect” records created according to complex sets of rules. Semantic versioning offers a
simple, low-cost method to meet the needs of linked data contributors and consumers,
provided the community can agree on the meta-semantics of major and minor. Similar
versioning techniques may also support the publication of datasets as continuing resources,
with scope and context changing over time.

References

10

[1] Preston-Werner, Tom. “Semantic Versioning 2.0.0.” Available at: http://semver.org/
[2] Clark, Kendall. Clark & Parsia blog posting “Semantic Versioning and OWL
Ontologies”. Available at: http://weblog.clarkparsia.com/2011/09/19/semantic-versioning-
and-owl-ontologies/
[3] Phipps, Jon. “Timeslices and Versions. Available at:
http://metadataregistry.org/blog/2008/03/26/timeslices-and-versions/
[4] Chacon, Scott. “Getting Started: Git Basics”. Available at: http://www.git-
scm.com/book/en/Getting-Started-Git-Basics
[5] Hillmann, Diane. Blog post on Metadata Matters “Versions and Services, pt. 2”.
Available at: http://managemetadata.com/blog/2013/07/23/versions-and-services-pt-2/
[6] Dublin Core Metadata Initiative, Vocabulary Management Community. “Vocabulary
Special Session Meeting Report”. Available at: http://wiki.dublincore.org/index.php/DC-
2011_Vocabulary_Special_Session/Meeting_Report
[7] DataSift: Open Source Projects. “Versioning”. Available at:
http://datasift.github.io/gitflow/Versioning.html
[8] “Semantic Versioning starting with Ruby 2.1.0”. Available at:
https://www.ruby-lang.org/en/news/2013/12/21/semantic-versioning-after-2-1-0/

